Time reversal and n-qubit canonical decompositions
نویسندگان
چکیده
On pure states of n quantum bits, the concurrence entanglement monotone returns the norm of the inner product of a pure state with its spin-flip. The monotone vanishes for n odd, but for n even there is an explicit formula for its value on mixed states, i.e., a closed-form expression computes the minimum over all ensemble decompositions of a given density. For n even a matrix decomposition n=k1ak2 of the unitary group is explicitly computable and allows for study of the monotone’s dynamics. The side factors k1 and k2 of this concurrence canonical decomposition sCCDd are concurrence symmetries, so the dynamics reduce to consideration of the a factor. This unitary a phases a basis of entangled states, and the concurrence dynamics of u are determined by these relative phases. In this work, we provide an explicit numerical algorithm computing n=k1ak2 for n odd. Further, in the odd case we lift the monotone to a two-argument function. The concurrence capacity of n according to the double argument lift may be nontrivial for n odd and reduces to the usual concurrence capacity in the literature for n even. The generalization may also be studied using the CCD, leading again to maximal capacity for most unitaries. The capacity of n ^ I2 is at least that of n, so odd-qubit capacities have implications for even-qubit entanglement. The generalizations require considering the spin-flip as a time reversal symmetry operator in Wigner’s axiomatization, and the original Lie algebra homomorphism defining the CCD may be restated entirely in terms of this time reversal. The polar decomposition related to the CCD then writes any unitary evolution as the product of a time-symmetric and time-antisymmetric evolution with respect to the spin-flip. En route we observe a Kramers’ nondegeneracy: the existence of a nondegenerate eigenstate of any time reversal symmetric n-qubit Hamiltonian demands sid n even and siid maximal concurrence of said eigenstate. We provide examples of how to apply this work to study the kinematics and dynamics of entanglement in spin chain Hamiltonians. © 2005 American Institute of Physics. fDOI: 10.1063/1.1900293g
منابع مشابه
Infinite-dimensional versions of the primary, cyclic and Jordan decompositions
The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.
متن کاملQuantum separability, time reversal and canonical decompositions
We propose an interpretation of quantum separability based on a physical principle: local time reversal. It immediately leads to a simple characterization of separable quantum states that reproduces results known to hold for binary composite systems and which thereby is complete for low dimensions. We then describe a constructive algorithm for finding the canonical decomposition of separable an...
متن کاملCanonical Decompositions of n-qubit Quantum Computations and Concurrence
The two-qubit canonical decomposition SU(4) = [SU(2)⊗ SU(2)]∆[SU(2)⊗ SU(2)] writes any two-qubit quantum computation as a composition of a local unitary, a relative phasing of Bell states, and a second local unitary. Using Lie theory, we generalize this to an n-qubit decomposition, the concurrence canonical decomposition (C.C.D.) SU(2n) = KAK. The group K fixes a bilinear form related to the co...
متن کاملSolving System of Linear Congruence Equations over some Rings by Decompositions of Modules
In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...
متن کاملOn the CNOT-cost of TOFFOLI gates
The three-input TOFFOLI gate is the workhorse of circuit synthesis for classical logic operations on quantum data, e.g., reversible arithmetic circuits. In physical implementations, however, TOFFOLI gates are decomposed into six CNOT gates and several one-qubit gates. Though this decomposition has been known for at least 10 years, we provide here the first demonstration of its CNOT-optimality. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005